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Abstract

Generic expressions of mass and stiffness matrices of the portal frame are presented. These are derived by
means of the substructure synthesis method. This method is exceptionally characterised by low-order
eigenvalue problems and highly accurate eigensolutions.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The symmetrical clamped portal frame is the basic framed or civil engineering structure. Thus,
its dynamic characteristics have drawn attention since the early 20s (see Ref. [1] for an early
survey); nevertheless, solid results were obtained later [2,3]. The determinant of eigenfunction
coefficients and the dynamic stiffness methods [4] can be regarded as the first analytical
procedures; several versions of the second method, however, were employed throughout the mid-
century to obtain the frame’s natural frequencies and modes: the receptance method [3], one based
on the reciprocal theorem [5], another by Rieger and McCallion [6] and the force method [7]. Of
course, the conventional finite element method (FEM) is the next method to consider and that has
been used to solve the problem [8].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

EIb beam flexural rigidity
EIc columns flexural rigidity
K stiffness matrix
Lb beam length
Lc columns length
mb beam mass per unit length

mc columns mass per unit length
M inertia matrix
q eigenvector
bn Euler–Bernoulli beam characteristic

betas
sn Euler–Bernoulli beam characteristic

sigmas
on natural frequency
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The modern approaches to dynamic analysis of framed structures are based on the ideas
of reducing the computational effort of the FEM [9–12] and enhancing the dynamic
stiffness method which deals with highly irregular frequency functions [13,14]. For instance, it
can be observed in one of these references that the FEM may not be the most indicated
one for simple structures as the portal frame [10]; in fact, by means of the substructure
synthesis method (SSM) [15], it is demonstrated in that work that the convergence characteristics
of this method are superior to the ones associated with the FEM for the simple frame.
Of course, faster convergence is synonymous with lower order system matrices or eigenvalue
problems. Therefore, the structural dynamics question of how to obtain an accurate model with
as few degrees of freedom as possible can be answered by means of the SSM in the one-portal
frame case.

In this technical communication, generic expressions of those low-order SSM stiffness
and mass matrices of the portal frame are presented. These matrices will permit easy and
precise computation of natural frequencies and mode shapes of any symmetrical portal
frame; furthermore, this accurate and low-order model can be utilised advantageously
in additional analyses such as dynamic response, stability, active control and model
updating.
2. SSM inertia and stiffness matrices

The analysed symmetrical portal frame is shown in Fig. 1. It is understood that both
columns share the same flexural rigidity EIc, mass per unit length mc and length Lc, which
may differ from the corresponding properties of the beam: EIb, mb and Lb; subscripts c and b
stand for column and beam, respectively. Furthermore, the usual engineering assumption of
slenderness is considered to neglect the effects of shear deformation, rotatory inertia and axial
motion.

The application of the SSM to multiply supported structures, or to the one-portal frame for
that matter, has been presented in a previous work [10]; in this short work only generic
expressions, which are of course original, of the system matrices are presented along with the
necessary definitions directly related to the matrices; thus, for the theoretical aspects of the SSM,
readers are referred to that previous work and another [11].
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EIb, mb 

Lb

Lc 

EIc, mc EIc, mc 

Fig. 1. Portal frame.
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2.1. Inertia matrix

The primary expression for the inertia matrix can be written as

M ¼ mc

M111

M121 M122

M131 M132 M133

0
B@

1
CAþ mb

M211

M221 M222

M231 M232 M233

0
B@

1
CAþ mbLb

M311

M321 M322

M331 M332 M333

0
B@

1
CA:

(1)

The first term represents the columns inertia, the second one the beam elastic inertia and
the third, the beam rigid-body inertia; the blanks indicate symmetry and the submatrices are
defined as

M111 ¼

f 22

f 32 � f 21 f 33 þ ðZ2
3 þ 1Þf 11

0 f 43 � f 41 f 44

f 52 � f 21 ðZ3Z5 þ 1Þf 11 f 54 � f 41 f 55 þ ðZ2
5 þ 1Þf 11

0 f 63 � f 61 0 f 65 � f 61 f 66

f 72 � f 21 ðZ3Z7 þ 1Þf 11 f 74 � f 41 ðZ5Z7 þ 1Þf 11 f 76 � f 61 f 77 þ ðZ2
7 þ 1Þf 11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

(2a)
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M121 ¼

0 Z3f 21 0 Z5f 21 0 Z7f 21 � � �

0 �Z3a3f 11 0 �Z5a3f 11 0 �Z7a3f 11 � � �

0 Z3f 41 0 Z5f 41 0 Z7f 41 � � �

0 �Z3a5f 11 0 �Z5a5f 11 0 �Z7a5f 11 � � �

0 Z3f 61 0 Z5f 61 0 Z7f 61 � � �

0 �Z3a7f 11 0 �Z5a7f 11 0 �Z7a7f 11 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2b)

M131 ¼

f 21 g3f 11 f 41 g5f 11 f 61 g7f 11 � � �

0 0 0 0 0 0 � � �

f 21 g3f 11 f 41 g5f 11 f 61 g7f 11 � � �

0 0 0 0 0 0 � � �

f 21 g3f 11 f 41 g5f 11 f 61 g7f 11 � � �

0 0 0 0 0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2c)

M122 ¼

f 22

f 32 � a3f 21 f 33 þ a2
3f 11

0 f 43 � a3f 41 f 44

f 52 � a5f 21 a3a5f 11 f 54 � a5f 41 f 55 þ a2
5f 11

0 f 63 � a3f 61 0 f 65 � a5f 61 f 66

f 72 � a7f 21 a3a7f 11 f 74 � a7f 41 a5a7f 11 f 76 � a7f 61 f 77 þ a2
7f 11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

(2d)

M132 ¼

f 21 �a3f 11 f 41 �a5f 11 f 61 �a7f 11 � � �

0 0 0 0 0 0 � � �

f 21 �a3f 11 f 41 �a5f 11 f 61 �a7f 11 � � �

0 0 0 0 0 0 � � �

f 21 �a3f 11 f 41 �a5f 11 f 61 �a7f 11 � � �

0 0 0 0 0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2e)



ARTICLE IN PRESS

C.A. Morales / Journal of Sound and Vibration 283 (2005) 1205–1215 1209
M133 ¼

2f 11

0 0

2f 11 0 2f 11

0 0 0 0

2f 11 0 2f 11 0 2f 11

0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2f)

M211 ¼

0

0 Z2
3g11

0 0 0

0 Z3Z5g11 0 Z2
5g11

0 0 0 0 0

0 Z3Z7g11 0 Z5Z7g11 0 Z2
7g11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2g)

M221 ¼ �M211; (2h)

M231 ¼

0 Z3ðg11 þ g21Þ 0 Z5ðg11 þ g21Þ 0 Z7ðg11 þ g21Þ � � �

0 �Z3g11 0 �Z5g11 0 �Z7g11 � � �

0 Z3ðg11 þ g41Þ 0 Z5ðg11 þ g41Þ 0 Z7ðg11 þ g41Þ � � �

0 �Z3g11 0 �Z5g11 0 �Z7g11 � � �

0 Z3ðg11 þ g61Þ 0 Z5ðg11 þ g61Þ 0 Z7ðg11 þ g61Þ � � �

0 �Z3g11 0 �Z5g11 0 �Z7g11 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2i)

M222 ¼M211; M232 ¼ �M231 (2j,k)

M233 ¼

g11 þ 2g21 þ g22

g32 � g11 � g21 g33 þ g11

g11 þ g21 þ g41 g43 � g11 � g41 g11 þ 2g41 þ g44

g52 � g11 � g21 g11 g54 � g11 � g41 g55 þ g11

g11 þ g21 þ g61 g63 � g11 � g61 g11 þ g41 þ g61 g65 � g11 � g61 g11 þ 2g61 þ g66

g72 � g11 � g21 g11 g74 � g11 � g41 g11 g76 � g11 � g61 g77 þ g11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

(2l)
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M311 ¼

0

0 l33 � 2l31 þ l11

0 0 0

0 l53 � l51 � l31 þ l11 0 l55 � 2l51 þ l11

0 0 0 0 0

0 l73 � l71 � l31 þ l11 0 l75 � l71 � l51 þ l11 0 l77 � 2l71 þ l11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2m)

M321 ¼ 0; (2n)

M331 ¼

0 l31 � l11 0 l51 � l11 0 l71 � l11 � � �

0 0 0 0 0 0 � � �

0 l31 � l11 0 l51 � l11 0 l71 � l11 � � �

0 0 0 0 0 0 � � �

0 l31 � l11 0 l51 � l11 0 l71 � l11 � � �

0 0 0 0 0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2o)

M322 ¼ 0; M332 ¼ 0; (2p,q)

M333 ¼

l11

0 0

l11 0 l11

0 0 0 0

l11 0 l11 0 l11

0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (2r)

where

f 2i�1 2i�1 ¼
Lc

4b2
1is

2
1i

; f 2i 2i ¼
Lc

b2
2is

2
6i

; (3a,b)

f 2i�1 2j ¼ f 2j 2i�1 ¼
ð�1Þ2iþj�12b2j

b1iðb
4
2j � b4

1iÞs1is6j

ðb2js2j � b1is1iÞ; (3c)

g2i�1 2i�1 ¼
Lbðs4i þ s5iÞ

2

4b2
3i

; g2i 2i ¼
Lb

b2
3iðs4i � s5iÞ

2
; (3d,e)
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g2i�1 2j ¼ g2j 2i�1 ¼

1

b4
3j � b4

3i

b3j

s2
4i � s2

5i

s4j � s5j

� b3iðs4i þ s5iÞ

� �
; for iaj;

s4i þ s5i

4b3
3i

ðb3iLbs3i þ 1Þ; for i ¼ j;

8>>>><
>>>>:

(3f)

l2i�1 2j�1 ¼ ðb1ib1js1is1jÞ
�1; a2i�1 ¼

bl1sl1

b1is1i

; (3g,h)

Z2i�1 ¼ a2i�1 � 1; g2i�1 ¼ a2i�1 � 2; (3i,j)

where in turn b1i; b2i and b3i are the in-increasing-magnitude-order and high-precision roots of

cos b1iLc coshb1iLc ¼ �1; cos b2iLc cosh b2iLc ¼ 1; tan b3iLb ¼ tanh b3iLb (4a2c)

and s1i;s2i;s3i; s4i; s5i and s6i are defined by

s1i ¼
sinh b1iLc � sin b1iLc

cosh b1iLc þ cos b1iLc

; s2i ¼
sinh b2iLc þ sin b2iLc

cosh b2iLc � cos b2iLc

; (4d,e)

s3i ¼ cot b3iLb; s4i ¼ cschb3iLb; s5i ¼ cscb3iLb; (4f2h)

s6i ¼ sinh b2iLc=4 þ sin b2iLc=4 � s2iðcoshb2iLc=4 � cos b2iLc=4Þ: (4i)

2.2. Stiffness matrix

The primary expression for the stiffness matrix is

K ¼ EIc

K111

K121 K122

K131 K132 K133

0
B@

1
CAþ EIb

K211

K221 K222

K231 K232 K233

0
B@

1
CA: (5)

The first term represents the columns stiffness and the second one the beam stiffness; the
submatrices are defined as

K111 ¼

h22

h32 � h21 h33 þ ðZ2
3 þ 1Þh11

0 h43 � h41 h44

h52 � h21 ðZ3Z5 þ 1Þh11 h54 � h41 h55 þ ðZ2
5 þ 1Þh11

0 h63 � h61 0 h65 � h61 h66

h72 � h21 ðZ3Z7 þ 1Þh11 h74 � h41 ðZ5Z7 þ 1Þh11 h76 � h61 h77 þ ðZ2
7 þ 1Þh11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

(6a)
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K121 ¼

0 Z3h21 0 Z5h21 0 Z7h21 � � �

0 �Z3a3h11 0 �Z5a3h11 0 �Z7a3h11 � � �

0 Z3h41 0 Z5h41 0 Z7h41 � � �

0 �Z3a5h11 0 �Z5a5h11 0 �Z7a5h11 � � �

0 Z3h61 0 Z5h61 0 Z7h61 � � �

0 �Z3a7h11 0 �Z5a7h11 0 �Z7a7h11 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (6b)

K131 ¼

h21 g3h11 h41 g5h11 h61 g7h11 � � �

0 0 0 0 0 0 � � �

h21 g3h11 h41 g5h11 h61 g7h11 � � �

0 0 0 0 0 0 � � �

h21 g3h11 h41 g5h11 h61 g7h11 � � �

0 0 0 0 0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (6c)

K122 ¼

h22

h32 � a3h21 h33 þ a2
3h11

0 h43 � a3h41 h44

h52 � a5h21 a3a5h11 h54 � a5h41 h55 þ a2
5h11

0 h63 � a3h61 0 h65 � a5h61 h66

h72 � a7h21 a3a7h11 h74 � a7h41 a5a7h11 h76 � a7h61 h77 þ a2
7h11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

(6d)

K132 ¼

h21 �a3h11 h41 �a5h11 h61 �a7h11 � � �

0 0 0 0 0 0 � � �

h21 �a3h11 h41 �a5h11 h61 �a7h11 � � �

0 0 0 0 0 0 � � �

h21 �a3h11 h41 �a5h11 h61 �a7h11 � � �

0 0 0 0 0 0 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (6e)
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K133 ¼

2h11

0 0

2h11 0 2h11

0 0 0 0

2h11 0 2h11 0 2h11

0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (6f)

K211 ¼

0

0 Z2
3k11

0 0 0

0 Z3Z5k11 0 Z2
5k11

0 0 0 0 0

0 Z3Z7k11 0 Z5Z7k11 0 Z2
7k11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (6g)

K221 ¼ �K211; (6h)

K231 ¼

0 Z3ðk11 þ k21Þ 0 Z5ðk11 þ k21Þ 0 Z7ðk11 þ k21Þ � � �

0 �Z3k11 0 �Z5k11 0 �Z7k11 � � �

0 Z3ðk11 þ k41Þ 0 Z5ðk11 þ k41Þ 0 Z7ðk11 þ k41Þ � � �

0 �Z3k11 0 �Z5k11 0 �Z7k11 � � �

0 Z3ðk11 þ k61Þ 0 Z5ðk11 þ k61Þ 0 Z7ðk11 þ k61Þ � � �

0 �Z3k11 0 �Z5k11 0 �Z7k11 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; (6i)

K222 ¼ K211; K232 ¼ �K231; (6j,k)

K233 ¼

k11 þ 2k21 þ k22

k32 � k11 � k21 k33 þ k11

k11 þ k21 þ k41 k43 � k11 � k41 k11 þ 2k41 þ k44

k52 � k11 � k21 k11 k54 � k11 � k41 k55 þ k11

k11 þ k21 þ k61 k63 � k11 � k61 k11 þ k41 þ k61 k65 � k11 � k61 k11 þ 2k61 þ k66

k72 � k11 � k21 k11 k74 � k11 � k41 k11 k76 � k11 � k61 k77 þ k11

..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

(6l)
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where

h2i�1 2i�1 ¼ b4
1i f 2i�1 2i�1; h2i 2i ¼ b4

2i f 2i 2i; (7a,b)

h2i�1 2j ¼ h2j 2i�1 ¼ b4
1i f 2i�1 2j; k2i�12i�1 ¼ b4

3ig2i�1 2i�1; k2i 2i ¼ b4
3ig2i 2i; (7c2e)

k2i�1 2j ¼ k2j 2i�1 ¼

b3ib3j

b4
3j � b4

3i

b3
3i

s2
4i � s2

5i

s4j � s5j

� b3
3jðs4i þ s5iÞ

� �
for iaj;

b3iðs4i þ s5iÞ

4
ðb3iLbs3i � 3Þ for i ¼ j:

8>>><
>>>:

(7f)

3. Remarks on these results

The implication of this work is that there now are available generic system matrices expressions
that will allow the attainment of very accurate natural frequencies and mode shapes of the portal
frame through very-low-order eingenvalue problems. This is possible by means of the SSM [10]
because of two reasons: (1) the structure is divided into its natural and intuitive substructures or
superelements and (2) the selection of admissible functions that are dynamically related to the
vibration problem at hand and that make up a quasicomparison function. It has been shown that
in this structural case the FEM demands larger order eigenvalue problems to satisfy the same
specified accuracy, with the associated numerical and computational-cost problems; granted, the
system matrices are simpler by this more widespread method.

Note that the order of the submatrices in Eqs. (2) and (6) is just 5 for 5-digit convergence of the
first three natural frequencies in actual cases [10]. This computational fact has been corroborated
with a steel structure with dimensions different from the ones in Ref. [10], where a concrete frame
was considered.

Further, the expressions in Eqs. (3) and (7) are that simple because of the simplest-expression
integrals involving beam eigenfunctions and derivatives that have been previously obtained
[16,17]. The inherent computational superiority of the SSM is enhanced by these integrals because
these reduce the number of computer operations (e.g. with badly behaved hyperbolic functions)
and eliminate the need of numerical integration. Also, note that many of the simplifying zeros in
the submatrices in Eqs. (2) and (6) are a result of the orthogonality of beam eigenfunctions [8].

Regarding obtaining the (approximate) mode shapes or eigenfunctions of the frame, which
might not have been clear in Ref. [10], these are obtained, as well as the natural frequencies,
through the solution of the usual vibrational eigenvalue problem

Kq ¼ o2
nMq (8)

by inserting the eigenvectors q into Eq. (25) of Ref. [11], by introducing the resulting vectors qd in
conjunction with the vectors of the admissible functions (Eqs. (29) of Ref. [11]) into Eqs. (10) of
Ref. [11] and ultimately by synthesising.

Finally, this SSM has been applied to an n-story single-bay frame [11], which means that system
matrices expressions can also be developed for that case or, in principle, for the n-story m-bay
general case.
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4. Conclusions

Generic expressions of substructure-synthesis mass and stiffness matrices of the one-portal
frame have been presented, which will allow easy and accurate computation of its natural
frequencies and mode shapes through the solution of low-order eigenproblems.
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